

SchNet - A deep learning architecture for molecules and materials: The reach of the model

Huziel E. Sauceda Instituto de Física, UNAM Mexico City, Mexico

FOR TRUTH AND BEAUTY

Frontiers of Science Award

802532 (R02283) 11-96

https://www.google.com/url?sa=i&url=https%3A%2F%2Fgeology.com%2Fworld%2Fmexico-satelliteimage.shtml&psig=AOvVaw1TcCtd2UARtlKTt1tfzaS1&ust=1704791911199000&source=images&cd=vfe&ved=0CBEQjRxqF woTCODToo-8zYMDFQAAAAAAAAAAAAA

Vniver4dad NacionaL AvFnºma de Mexiço

(founding goes back to 1551)

UNESCO World Heritage

The Team

Jessica Martínez-Marcelo (B)

Ricardo Montoya (M)

Roman Armenta (PhD)

Diana-Sanchez-Barrios (M)

Brian Zamora-Martínez (M)

Machine Learning for Simulations @

Carlos Cureño-Ayluardo (B)

Carlos Vital-José (PhD)

Leonardo Cázares (B)

Moisés Vázquez-Sánchez (M)

Diego Peña-Angeles (M)

Atomistic simulations

Metal clusters' **Physics**

Propagator learning

Dynamical processes (Nuclear and electronic)

Electronic structure

ML and Quantum Monte Carlo (First and second quantization)

Research

For example using **LSTM**:

Propagator learning

Dynamical processes (Nuclear and electronic)

Machine Learning for Simulations @

Research

Carlos Cureño-Ayluardo

Diego Gonzalez-Baños

Machine Learning for Simulations @

Roman Armenta

Dr Arturo Camacho Guardian

Dr Hugo Alberto Lara García

Dr Giuseppe Pirruccio

PIIF2023

Electronic structure

ML and Quantum Monte Carlo (First and second quantization)

THE JOURNAL OF CHEMICAL PHYSICS 148, 241722 (2018)

SchNet – A deep learning architecture for molecules and materials

K. T. Schütt,^{1,a)} H. E. Sauceda,² P.-J. Kindermans,¹ A. Tkatchenko,^{3,b)} and K.-R. Müller^{1,4,5,c)} ¹Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ²Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany ³Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg ⁴Max-Planck-Institut für Informatik, Saarbrücken, Germany ⁵Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea

(Received 16 December 2017; accepted 8 March 2018; published online 29 March 2018)

Frontiers of Science Award

Al for Physical Sciences (Material, Physics and Chemistry)

The Team

Kristof T. Schütt

Dr. Huziel E. Sauceda berlir UNIVERSITÉ DU LUXEMBOURG Technische Universität Berlin

Technische Universität Berlin

2018

Dr. Pieter-Jan Kindermans

Prof. Alexandre Tkatchenko

Prof. Klaus-Robert Müller

The Team

Dr. Kristof T. Schütt

Prof. Huziel E. Sauceda

Dr. Pieter-Jan Kindermans

Google DeepMind

Prof. Alexandre Tkatchenko

Prof. Klaus-Robert Müller

• SchNet

- Evolution
- Applications

- Kernel Methods
- Simulations

• Some uses of ML

Resources management

Computation efficiency

Explainable AI

Machine Learning

 $\mathcal{H}\Psi = V_{BO}\Psi$

Learning force fields

$-\mathbf{F} = \langle \Psi^* | \partial \mathcal{H} / \partial \mathbf{x} | \Psi \rangle$

The problem...

Limitations of ab initio molecular dynamics

Predictive simulations: Energies and forces

Ab initio

Chem. Rev. 121, 10142-10186 (2021)

Force Fields

Biopolymers Biological Units Proteins Peptideŝ

Predictive simulations: Energies and forces

Ab initio

Predictive simulations:

Ab initio + Molecular dynamics

Converged thermodynamics: ~ $10^6 * \mathcal{O}(N^3)$

7

Water

$\mathcal{H}\Psi = E\Psi$

~10 s/s.p.c. ~100 days

Molecule + 2D material

ML in physics and chemistry...

CHEMICAL REVIEWS

Machine Learning Force Fields

Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger, Igor Poltavsky, Kristof T. Schütt, Alexandre Tkatchenko*, and Klaus-Robert Müller*

Cite this: Chem. Rev. 2021, 121, 16, 10142−10186
 Publication Date: March 11, 2021 ∨
 https://doi.org/10.1021/acs.chemrev.0c01111
 Copyright © 2021 The Authors. Published by
 American Chemical Society
 RIGHTS & PERMISSIONS
 C: () () () () ()

Chem. Rev. 121, 10142-10186 (2021)

AUGUST 25, 2021 VOLUME 121 NUMBER 16

pubs.acs.org/CR

CHEMICAL REVIEWS

Nat. Commun., 9, 3887 (**2018**).

Graphs

Chemical compounds

Brain networks

Social networks

https://miro.medium.com/v2/resize:fit:1029/1*txzoFgR0XvAy4PpIgbUyvQ.png

G = (V, E)

$\mathbf{v}_j = \mathbf{I} \in \mathbb{R}^n$

Message exchange

$\mathbf{v}_{j}^{(s+1)} = \mathsf{update}^{(s)}(\mathbf{v}_{j}^{(s)}, \mathsf{aggregate}^{(s)}(\{\mathbf{v}_{i}^{(s)}; i \in \mathcal{N}_{j}\}))$

- Min

- Max
- MLP
- RNN

$$\mathbf{v}_{j}^{(s+1)} = \mathsf{update}^{(s)}(\mathbf{v}_{j}^{(s)}, \mathsf{aggregate}^{(s)}(\{\mathbf{v}_{i}^{(s)}; i \in \mathcal{N}_{j}\}))$$

Graph Convolutional Networks, Kipf and Welling [2016]

Multi-Layer-Perceptron as Aggregator, Zaheer et al. [2017]

Graph Attention Networks, Veličković et al. [2017]

Gated Graph Neural Networks, Li et al. [2015]

$$\mathbf{h}_{u}^{(k)} = \mathbf{G}\mathbf{F}$$

 $\operatorname{RU}(\mathbf{h}_{u}^{(k-1)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)})$

Continuous filter

NeurIPS 30, pp. 992 (2017)

J. Chem. Phys. 148, 241722 (**2018**)

$$\xi = [\mathbf{x}_{H_1}, \mathbf{x}_{O_1}, \mathbf{x}_{H_2}]$$
$$\mathbf{x}_{H_1} \in \mathbb{R}^{64}$$

Continuous filter

neural network

NeurIPS 30, pp. 992 (**2017**) *J. Chem. Phys.* 148, 241722 (**2018**)

$$\xi = [\mathbf{x}_{H_1}, \mathbf{x}_{O_1}, \mathbf{x}_{H_2}]$$
$$\mathbf{x}_{H_1} \in \mathbb{R}^{64}$$

Continuous filter

neural network

NeurIPS 30, pp. 992 (**2017**) *J. Chem. Phys.* 148, 241722 (**2018**)

$$\xi = [\mathbf{x}_{H_1}, \mathbf{x}_{O_1}, \mathbf{x}_{H_2}]$$
$$\mathbf{x}_{H_1} \in \mathbb{R}^{64}$$

Continuous filter

neural network

NeurIPS 30, pp. 992 (**2017**) *J. Chem. Phys.* 148, 241722 (**2018**)

NeurIPS 30, pp. 992 (**2017**)

J. Chem. Phys. 148, 241722 (**2018**)

2 (**2017**) 2 (**2018**)

SchNOrb

ARTICLE

https://doi.org/10.1038/s41467-021-27504-0

OPEN

SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects

Oliver T. Unke D^{1,2 M}, Stefan Chmiela D¹, Michael Gastegger D^{1,2}, Kristof T. Schütt¹, Huziel E. Sauceda D^{1,3} & Klaus-Robert Müller ^[] ^{1,4,5,6,7} ^[]

SpookyNet

SpookyNet

 $\mathbf{g}_{s}, \mathbf{\vec{g}}_{p}, \mathbf{\vec{g}}_{d}$

SpookyNet

Machine Learning

 $\mathcal{H}\Psi = V_{BO}\Psi$

Learning force fields

$-\mathbf{F} = \langle \Psi^* | \partial \mathcal{H} / \partial \mathbf{x} | \Psi \rangle$

Kernel ridge regression

M

Chem. Rev. 121 (16), 10142 (**2021**)

Kernel ridge regression

$$(\mathbf{K} + \lambda \mathbf{I})\vec{\alpha} = \vec{f}$$

$$\vec{f} = \left[\frac{df}{dx}(x_1), \frac{df}{dx}(x_2), \dots\right]$$

$$\mathbf{k}(x_i, x_j) = \frac{\partial^2}{\partial x \partial x'} e^{-||x - x'||^2/2\sigma}$$

 $\left\{\mathbf{R}_{l}\left\{\mathbf{R}_{l},\mathbf{R}_{l},\mathbf{R}_{l}\right\}\left(\mathbf{R}_{l},\mathbf{R}_{l}\right)\left(\mathbf{R}_{l},\mathbf{R}_{l}\right)\right\}_{l=1}^{M}\right\}_{l=1}^{M}$

$$, \frac{df}{dx}(x_M) \bigg]^{\mathsf{T}}$$

$$|_{(x,x')=(x_i,x_j)}$$

Gradient Domain Machine Learning (GDML)

$$\frac{df}{dx}(x) = \sum_{l=1}^{M} \alpha_l \frac{d^2}{dx^2} \kappa(x, x_l)$$
$$f(x) = \sum_{l=1}^{M} \alpha_l \frac{d}{dx} \kappa(x, x_l)$$

Sci. Adv. **3**, e1603015 (**2017**)

The GDML framework

 $\hat{\mathbf{f}}_{\mathbf{F}}(\vec{x}) = \sum_{i=1}^{M} (\vec{\alpha}_i \cdot \nabla) \nabla \kappa(D(\vec{x}), D(\vec{x}_i))$

$$\hat{\mathbf{f}}_{\mathbf{F}}(\vec{x}) = \sum_{i=1}^{M} \sum_{\mathbf{P} \in \mathcal{F}} (\mathbf{P}\vec{\alpha}_i \cdot \nabla) \nabla \kappa(\underline{D(\vec{x})}, \underline{D(\mathbf{P}\vec{x}_i)})$$

sGDML

BIGDML

GDML

$$\hat{\mathbf{f}}_{\mathbf{F}}(\vec{x}) = \sum_{i=1}^{M} \sum_{\mathbf{T} \in \mathcal{T} \mathbf{P} \in \mathcal{F}}$$

Numerical Optimizer

 $\boldsymbol{\alpha}_{t} = \boldsymbol{\alpha}_{t-1} - \boldsymbol{\gamma} \left[(\mathbf{K} + \boldsymbol{\lambda} \mathbb{I}) \boldsymbol{\alpha}_{t-1} - \mathbf{y} \right]$ $\mathbf{P}^{-1} = \boldsymbol{\lambda}^{-1} \left[\mathbb{I} - \mathbf{K}_{mk} (\boldsymbol{\lambda} \mathbf{K}_{kk} + \mathbf{K}_{mk}^{\top} \mathbf{K}_{mk})^{-1} \mathbf{K}_{mk}^{\top} \right]$

Sci. Adv. **3**, e1603015 (**2017**)

Nat. Commun., 9, 3887 (2018)

 $\sum \left(\mathbf{TP} \vec{\alpha}_i \cdot \nabla \right) \nabla \kappa \left(D(\vec{x}), D(\mathbf{TP} \vec{x}_i) \right)$

Nat. Commun. 13 (1), 3733 (2022)

Sci. Adv. 9, eadf0873 (2023)

Path integral molecular dynamics

Formulation

Nuclear Quantum Effects

Protons/hydrogen atoms NQE

1: Magnetic shielding

Phys. Chem. Chem. Phys. 2015, 17, 14355-14359.

3: Spectroscopy

J. Am. Chem. Soc. 2019, 141, 2526–2534

2: Enzyme proton networks

Markland et al. *J. Phys. Chem. B.*, 121 (42), 9807-9815 (2017) *Proc. Natl. Acad. Sci.,* 111 (52), 18454-18459 (2014)

Sci. Adv. **3**, e1603015 (**2017**) *Nat. Commun.*, 9, 3887 (**2018**) J. Chem. Phys. 150 (11), 114102 (2019) J. Chem. Phys. 153 (12), 124109 (2020) Nat. Commun., 12, 442 (2021)

Ring Polymer Molecular Dynamics: Summary

$$H = \frac{p^2}{2m} + U(x)$$

Chem. Rev. 121 (16), 10142 (2021)

 $H = \sum_{l=1}^{P} \left[\frac{p_l^2}{2m'} + \frac{1}{2} m \omega_P^2 (x_{l+1} - x_l)^2 + \frac{1}{P} U(x_l) \right]_{x_{P+1} = x_1}$

Ring polymer

Classical simulation provides quantum results

Nuclear Quantum Effects

Molecular bond delocalization during MD simulations

Quantum interatomic dilation

Research

Applications

Spectroscopy

Diffusion

•

Batteries

Dispersion Interactions

Applications

Dispersion Interactions

Nuclear Quantum Effects

Molecular bond delocalization during MD simulations

Quantum interatomic dilation

HES, V. Vassilev-Galindo, S. Chmiela, K.-R. Müller, A. Tkatchenko Nat. Commun., 12, 442 (2021)

Nuclear Quantum Effects: van der Waals interaction

Quantum interatomic dilation

HES et al. Nat. Commun., 12, 442 (2021) HES et al. Nat. Commun., 13, 3733 (2022) Chmiela et al. Sci. Adv. 9, eadf0873 (2023)

Nuclear Quantum Effects: van der Waals interaction

Benzene dimer non-covalent interaction Interaction Energy [kcal/mol]

$$E_{vdW} \sim -\frac{V_A^b * V_B^b}{R_{AB}^6}$$

HES et al. Nat. Commun., 12, 442 (2021)

Nuclear Quantum Effects: vdW in benzene@graphene

Dynamics of the system

$$E_{vdW} \stackrel{!}{\sim} - \frac{V_A^b * V_B^b}{R_{AB}^6}$$

Nat. Commun., 13, 3733 (**2022**)

$$\begin{bmatrix}
 5 \\
 4 \\
 7 \\
 9 \\
 9 \\
 1 \\
 0 \\
 0 \\
 20
 \end{bmatrix}$$

Classical MD

PIMD 80 0 40 60 20 40 60 80 Benzene's angle relative to the z axis [°]

Classical particle

Quantum particle

Dynamical strengthening

Quantum interatomic *dilation*

Thermal fluctuations

Nat. Commun., 12, 442 (**2021**) *Nat. Commun.*, 13, 3733 (**2022**) Sci. Adv. 9, eadf0873 (2023)

Summary

Force fields learning

Sci. Adv. 9, eadf0873 (2023)

Mach. Learn.: Sci. Technol. 3, 025011 (2022) J. Phys. Chem. Lett. 14, 7092 (2023)

Nuclear quantum effects

Nat. Commun., 12, 442 (**2021**) Nat. Commun., 13, 3733 (**2022**) Under Review (**2023**)

Battery physics

